

Michael Payne
 Structural Option

Advisor: Dr. Richard Behr
23 September 2011

TABLE OF CONTENTS

Table of Contents 1
Executive Summary 2
Introduction 3
Structural Systems 5
Design Criteria 7
Codes and References 7
Material Strengths 8
Design Loads 8
Design Analysis 10
Wind Load Summary 10
Seismic Load Summary 17
Gravity Load Spot Check. 20
Evaluation and Summary 21
Appendix A: Wind Analysis 22
Appendix B: Seismic Analysis 24
Appendix C: Gravity Spot Check 28
Appendix D: Structural Framing Plans 32

EXECUTIVE SUMMARY

The objective of Technical Report I was to analyze and understand the existing structural of the Hunter's Point South School design. This was accomplished by exploring the structural concepts of the existing design, computing all gravity and lateral loads applied to the structural system, and performing spot checks on the existing member sizes and strengths.

First, this report dissects the different structural systems of the building, including foundation, floor, gravity frame, and lateral frame systems. This is followed by a breakdown of the design codes, material strengths, and gravity loads implemented in this design. Dead load, live load, and snow load will be determined for the different systems in this building design.

Then, a detailed analysis of wind and seismic loads will be executed to determine the controlling lateral system design. This report used ASCE7-10 to determine the wind and seismic loads on this building. After analyzing the effects of each for base shear and overturning moment, it was determined that wind controls the design of the lateral system with a design shear force of 1322 k and design moment of $61,324 \mathrm{k}$-ft.

Finally, a spot check will be performed on part of the gravity system to determine member design specifications. The sample beam, girder, and column were all determined to have been appropriately designed to meet all strength and serviceability requirements.

This report also includes an appendix that contains valuable tables and calculations used during this structural analysis. This report will be followed by two other technical reports. The first will analyze several different floor system designs that could be used in this structure, and the last will go into further detail on the lateral system design of this structure.

INTRODUCTION

Hunter's Point South School is a new 5 story educational building being constructed as part of the first phase of New York City's new mixed-use development plan on a 30 acre site of waterfront properties in Long Island City, NY. The new development focuses on creating an affordable middleincome area that includes several new mixed use housing towers, along with supporting retail spaces, a school, and new waterfront park. Hunter's Point South School is being developed by the NYC School Construction Authority (SCA) along with

Figure 1: Building design rendering Skanska contracting and
FXFowle Architects. The structural engineer on the project is Ysreale A. Seinuk, PC. Construction of the school will last from January 2011 to October 2013, and cost approximately $\$ 61$ Million to complete. It will open its doors to students in the fall of 2013.

Figure 2: Building site plan

The mixed use intermediate and high school will be nearly 154,500 square feet and house roughly 1100 students from grades 6-12 and District 75 (special needs) from the Queens School District. Being constructed on $51^{\text {st }}$ Avenue, Hunter's Point will take up almost a full city block between $2^{\text {nd }}$ Street and Center Boulevard with space in the corner of the lot reserved for the construction of a new 30 story housing tower to be built right next to the school. The site layout can be seen in Figure 2. It should also be noted that the site sits right across the street from the bay.

Following along with other city development ideals, the school building has a modern architectural feel as it incorporates interesting shapes, cantilevers, and sense of solids and voids together. The cubic shape of the building is broken up with vertical shafts, horizontal windows, and slanted edges. In addition, the SCA is aiming to achieve LEED Silver certification for this building through several different sustainable features and construction procedures.

The 5 story school rises roughly 75 feet off finished grade, with an irregular parapet rising as high as 98 feet on some elevations. It is mainly a structural steel building, with concrete on metal deck floors and an assorted exterior. The exterior façade comprises of a unique blend of grey brick, slate veneer, concrete block, orange aluminum composite panels, and different types of glazing including translucent panels. Much of the shell is part of a curtain wall system that is supported by the floor above. There is, however, some load bearing masonry used in the design.

Wall Section
Axonometric Detail
Inside, the building is vertically stacked to separate the schools, but includes ties to each other using shared spaces. The first floor contains athletic space, including a 2 story tall gymnasium and locker rooms for all grades. There are also support rooms/offices for the intermediate school and general storage areas. The second floor contains an auxiliary gym, library, and special education rooms for the District 75 students. The third floor contains a
 full sized 2 story auditorium that links the high school and intermediate school together, along with IS classrooms and IS support

Figure 4: Building Section rooms/offices. The fourth floor contains high
school classrooms with support rooms/offices and access to the auditorium. The fifth floor contains HS and IS cafeterias with a central kitchen space, a connecting 4000sf roof terrace, science labs, and support rooms/offices for the high school. There is a small mechanical penthouse on the top roof.

STRUCTURAL SYSTEMS

This section provides a brief overview of the different structural systems implemented in the Hunter's Point design. The structure consists of a steel framing system with concrete on metal deck floors. There are no subgrade levels, and structural height of the building is 72.3 feet to the roof level with a 12'-15' parapet wall extending above. All exterior walls are non-loadbearing brick, slate, aluminum panel, or glazing. CMU masonry infill walls are used as a backup wall and are grout filled and reinforced against lateral forces. The steel frame makes up both the gravity and lateral load systems of this building.

Foundation

The foundation consists of a 12" 4000psi reinforced slab on grade supported by a system of grade and strap beams, 14" caissons, and steel H-piles. Special isolation caissons, as seen in Figure 5, were used for locations within 50 feet of two subsurface tunnels used for the Queens-Midtown easement line that run E-W through the site. Each caisson has three 20" 75 ksi steel threadbars within 8000psi grout, and can support 800kips of compressive force. A geotechnical survey performed by Langan Engineering showed soil type ranges

Figure 5: Isolation caisson cross section from grey silty sand to clay, with bedrock consisting of Gneiss starting at about 40 feet below grade. Deep foundations are installed to this level.

Figure 6: Typical floor system

Floor and Roof Systems

As seen in Figure 6, the floor system consists typically of 3 $1 / 4$ " thick 3500 psi lightweight concrete on 3 " deep composite 18 gage galvanized metal deck ($6 \frac{1}{4}$ " total depth) supported by a steel framing system. Concrete is reinforced with 6×6 W2.0xW2.0 WWF. The floor system above the gymnasium will consist of acoustical metal deck in place of typical deck. The auditorium stadium seating floor will have 16 gage deck in place of typical deck. The typical unsupported span length for the floor deck is 12'. All cast-in-place concrete slabs are reinforced by \#4 reinforcing bars spaced 12 " in both directions. The top roof and terrace roof will have 2"thick lightweight concrete pavers over hot applied asphalt roofing membrane on top of the concrete slab.

Framing System

The superstructure of Hunter's Point is typically comprised of W10-W14 steel columns supporting W24 girders and either W14 beams at the building core or W16 beams towards the

Figure 7: Typical frame layout perimeter of the structure. Overall, sizes and span lengths vary greatly throughout the building and across every floor. The third floor includes special long span plate girders over the gymnasium space (red box, Figure 8). Spanning 80ft each with a flange thickness of 2-4 inches, these transfer beams allow for

Figure 8: Partial $3^{\text {rd }}$ Floor Framing Plan: Red box=Plate Girder Blue Box=Truss
The lateral force resisting system consists of both HSS and wide flange lateral truss bracing (blue box, Figure 8), along with steel moment connections at columns around the gymnasium and auditorium spaces. There are six different types of truss bracing systems, two of which are shown in Figure 9 to the right. Single bay trusses are primarily used along interior spaces, while double bay trusses are implemented along the exterior wall. Trusses run in both the N-S and E-W directions. The first three floors implement lateral force resisting systems the most. This is due to the 3 story cavity formed in the framing system to allow for open gym and auditorium space.

Figure 9: Two types of lateral bracing used in the design

DESIGN CRITERIA

This section provides data regarding codes, materials, and gravity loads for the design of Hunter's Point South. This thesis project will differ from the original design in that it will implement design criteria from ASCE7-10 rather than the NYCBC 2008 building code.

CODES \& REFERENCES

Design Codes

Building Code

- New York City Building Code, NYCBC 2008

Reference Codes

- American Concrete Institute Building Code, ACI 318-02
- American Institute of Steel Construction, AISC $9^{\text {th }}$ edition

Thesis Codes

Building Code

- International Building Code, IBC 2009

Reference Codes

- American Concrete Institute Building Code, ACI 318-08
- American Institute of Steel Construction, AISC $14^{\text {th }}$ edition
- American Society of Civil Engineers, ASCE 7-10

MATERIAL STRENGTHS

Design Materials and strengths were found in the construction drawings on page S001.

Material	Element	Type	Strength
Cast-in-Place Concrete	Pile Caps under Columns	NWC	$\mathrm{f}^{\prime} \mathrm{c}=5950 \mathrm{psi}$
	Grade \& Strap Beams	NWC	$\mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi}$
	Column Pier and Butress	NWC	$\mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi}$
	Slab on Grade	NWC	$\mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi}$
	Floor Slab	LWC	$\mathrm{f}^{\prime} \mathrm{c}=3500 \mathrm{psi}$
Reinforcing Steel	Concrete Reinforcing bars		$\mathrm{FY}=60 \mathrm{ksi}$
	Caisson Steel threadbars		$\mathrm{Fy}=75 \mathrm{ksi}$
Structural Steel	Steel Wide Flange Members	ASTM A992	$\mathrm{Fy}=50 \mathrm{KSI}$
	Steel HSS Tubes	ASTM A500	$\mathrm{Fy}=46 \mathrm{ksi}$
	Steel Base Plates	ASTM A572 gr 50	$\mathrm{Fy}=50 \mathrm{ksi}$
	Steel Deck	ASTM A653	$\mathrm{Fy}=40 \mathrm{ksi}$
	Steel Bolts	ASTM A325	$\mathrm{Fu}=120 \mathrm{ksi}$
		ASTM A490	$\mathrm{Fu}=150 \mathrm{ksi}$

Table 1

DESIGN LOADS

Hunter's Point South was designed for gravity loads using the Allowable Strength Design (ASD) Method. This thesis project will implement the Load and Resistance Factor Design (LRFD) Method instead due to the fact that it is becoming the industry standard. All thesis design loads have been taken from tables out of ASCE7-10 unless original design load controlled.

Dead Load		
	Design (psf)	Thesis (psf)
NW Concrete	150	150
LW Concrete + Deck	49	49
Masonry Wall	90	90
Roof Paver	15	15
MEP	20	25
Ceiling	10	25
Partitions	12	12
Curtain Wall	20	20

Table 2

Live Load	Design (psf)	ASCE7-10
first floor, lobby, stair, corridor	100	100
classrooms	40	40
art room/ science lab	60	60
office	50	50
library stacks	100	150
library reading	60	60
mechanical space	75	100
book storage	150	150
roof (main)	45	45
Gymnasium	100	100
Cafeteria	100	100
Kitchen	150	150
Auditorium Stage	150	150
toilets	60	60
terrace	100	$1.5 L L<100 \mathrm{psf}$
corridor 2nd floor+	80	80
Auditorium	100	100
stadium seating	60	60

Table 3

Snow Load		
	Design	ASCE7- 10
Ground Snow Load:	25 psf	25
Flat Roof Snow Load	22 psf	22
Snow Exposure Factor CB	1.1	1.1
Snow Load Importance IS	1.1	1.1
Thermal Factor Ct	1.0 main roof/terrace	1
	1.1 mech. bulkhead	

Table 4

DESIGN ANALYSIS

WIND LOAD SUMMARY

Wind load analysis of the Main Wind Force Resisting System (MWFRS) was determined using ASCE7-10 Chapter 26 and 27. Per this chapter, the building was designed as an enclosed building in Exposure Category C. The building was modeled as a solid rectangular shape to prevent unconservative values due to shorter building lengths. Hand calculations and Microsoft Excel were used to come up with net wind pressures, story shear forces, and overturning moments for both the North-South and East-West directions. Windward, leeward, and internal pressures were taken into account when calculating wind pressures.

North-South Direction

Results of wind load analysis in the N-S direction can be found in Table 5 and 6 and in Figure 10 and11 on the next several pages. The total base shear force due to wind loading is 1322 kip , and the overturning moment in this direction is about $61,324 \mathrm{k}$ - ft. Though a wind load analysis was included in the original design drawings, no results are included to compare to the analysis done in this report.

East-West Direction

Results of wind load analysis in the E-W direction can be found in Table 7 and 8 and in Figure 12 and13 on pages 14-16. Total base shear force due to wind in this direction is 924 kip , and the overturning moment is $44,259 \mathrm{k}$ - ft. This is slightly lower than the wind load forces in the N-S direction due to the shorter building length in that direction.

Wind Pressure: North-South Direction						
Story Level	Floor to Floor Height (ft)	Story Height (ft)	Wind Pressure (psf)	Internal Pressure (psf)	Net Pressure -GCpi (psf)	Net Pressure +GCpi (psf)
	15	72.3	29.488	$+/-7.806$	21.682	37.293
5	16.3	56	27.857	$+/-7.806$	20.052	35.663
4	14	42	26.257	$+/-7.806$	18.451	34.063
3	14	28	24.106	$+/-7.806$	16.301	31.912
2	14	14	21.256	$+/-7.806$	13.450	29.061
1	14	0	21.256	$+/-7.806$	13.450	29.061
Parapet	Windward	87.3	67.954	-	-	-
	Leeward	87.3	-45.302	-	-	-
	-	-	-18.430	$+/-7.807$	-26.235	-10.624
Roof	0 to $36.15 f t$	-	-33.174	$+/-7.807$	-40.979	-25.368
	$36.15-$ $72.3 f t$	-	-33.174	$+/-7.807$	-40.979	-25.368
	$72.3-$ 144.6 ft	-	-18.430	$+/-7.807$	-26.235	-10.624
	$144.6-$ $175 f t$	-	-11.058	$+/-7.807$	-18.864	-3.252

Table 5

Wind Loads: North-South Direction

Story Level	Floor to Floor Height (ft)	Story Height (ft)	Windward (kip)	Leeward (kip)	Total Story Force (kip)	Total Story Shear (kip)	Overturning Moment (ft-k)
Parape t	15	87.3	122.6	-81.7	204.3	1322.3	16302.0
Roof	16.3	72.3	135.9	-95.6	231.5	1118.0	16735.4
5	14	56	120.1	-88.3	208.4	886.5	11671.1
4	14	42	114.7	-88.3	203.0	678.1	8527.0
3	14	28	107.4	-88.3	195.8	475.1	5481.9
2	14	14	97.8	-88.3	186.2	279.3	2606.6
1	14	0	48.9	-44.2	93.1	93.1	0.0
			Σ			1322.3	61323.9

Table 6

Figure 10: Wind Pressures, N-S Direction

Figure 11: Wind Forces, N-S Direction

Wind Pressure: East-West Direction						
Story Level	Floor to Floor Height (ft)	Story Height (ft)	Wind Pressure (psf)	Internal Pressure (psf)	Net Pressure -GCpi (psf)	Net Pressure +GCpi (psf)
	15	72.3	29.488	$+/-7.806$	21.682	37.293
5	16.3	56	27.857	$+/-7.806$	20.052	35.663
4	14	42	26.257	$+/-7.806$	18.451	34.063
3	14	28	24.106	$+/-7.806$	16.301	31.912
2	14	14	21.256	$+/-7.806$	13.450	29.061
1	14	0	21.256	$+/-7.806$	13.450	29.061
Parapet	Windward	87.3	67.954	-	-	-
	Leeward	87.3	-45.302	-	-	-
Leeward	-	-	-15.665	$+/-7.807$	-23.471	-7.860
	0 to 36.15ft	-	-33.174	$+/-7.807$	-40.979	-25.368
	$36.15-72.3 \mathrm{ft}$	-	-33.174	$+/-7.807$	-40.979	-25.368
	$72.3-144.6 \mathrm{ft}$	-	-18.430	$+/-7.807$	-26.235	-10.624
	$144.6-$	-	-11.058	$+/-7.807$	-18.864	-3.252

Table 7

Wind Loads: East-West Direction

Table 8
33.2psf

Figure 12: Wind Pressures, E-W Direction

Figure 13: Wind Forces, E-W Direction

DESIGN ANALYSIS

SEISMIC LOAD SUMMARY

Seismic load analysis was done following the Equivalent Lateral Force Procedure in Chapter 12 of ASCE7-10. Building weight was determined using the structural floor plan drawings, then entered into an Excel file to calculate individual story forces and shear and overturning moment at the base. Using the method prescribed in ASCE7-10, a building period of 0.794 seconds was determined. Total building weight of the structure was found to be roughly 14,200 kips. It should be noted that the weight of the third floor is on the high side due to heavy plate girders placed at long spans over the gymnasium.

North-South Direction

Table 9 shows a base shear of 1186 kips and overturning moment of 7763 k-ft in the N S direction. A breakdown of individual story forces can be found in Figure 14. The original analysis done for this building came up with a base shear of 1061 k. This means the analysis in this report differs by 10.6%. This can be attributed to several reasons. The original design analysis used the 2008 NYC Building Code which could give different values when completing the reference analysis. Also, when determining floor weights, this report took slightly higher dead load weights than the original design reported (along with a more detailed analysis of weight), which could increase story forces and ultimately the base shear.

East-West Direction

Table 10 shows a base shear of 1270 kips and overturning moment of $11,292 \mathrm{k}$-ft in the E-W direction. A breakdown of individual story forces can be found in Figure 15. The increase of the overturning moment can be attributed to a longer effective building length in that direction.

North-South Direction Loading

i	h_{i}	h	w	$\mathrm{w}^{*} \mathrm{~h}^{\mathrm{k}}$	Cvx	f_{i}	v_{i}	B_{x}	5\%By	A_{x}	M_{z}
	ft	ft	kips			kips	kips	ft	ft		k-ft
6	16.33	72.33	2945	399348	0.390	462	462	131	7	1	3025
5	14	56	2563	259209	0.253	300	762	131	7	1	1964
4	14	42	2277	165596	0.162	192	954	131	7	1	1255
3	14	28	3500	159837	0.156	185	1139	131	7	1	1211
2	14	14	1978	40788	0.040	47	1186	131	7	1	309
		Σ	13262	1024779		1186	=V				7763

Table 9

7763k-ft
Figure 14: Seismic Forces, N-S Direction

East-West Direction Loading

Table 10

Figure 15: Seismic Forces, E-W Direction

DESIGN ANALYSIS

GRAVITY LOAD SPOT CHECK

Spot checks were performed on several framing elements in the gravity system to explore whether the original design was conservative, unconservative, etc. A beam, girder, and column in the northeast wing of the fourth floor were chosen for calculations (See Figure16). As was done in the original design, The Allowable Strength Method (ASD) was selected for this analysis so that a comparable member size could be determined for reference. AISC $14^{\text {th }}$ edition was used to determine member sizes.

To start, loads and serviceability were taken into account and sizes were chosen for each member. These results were then compared to the member sizes acquired from the original structural design. Calculations and AISC table references can be found in Appendix C.

Spot Check for Beam 4-9.5

This beam does not act compositely with the floor slab. After calculations were performed, a W18X35 steel beam was chosen from AISC. This was the same as the original design.

Spot Check for Girder 4-B8-9

This beam acts compositely with floor slab it supports. After calculations were performed, a W18X40 steel beam was chosen with 24 shear studs connecting it to the slab. Once again this was the same as the original design.

Spot Check for Interior Column 4-B8

After calculations were performed, a W12X58 steel column was chosen from AISC. This was once again the same as the original design.
It should be noted that different member sizes would have been determined if this report used the LRFD method of design. This was just a check on the original design though.

EVALUATION AND SUMMARY

Technical Report I is an analytical report that focused on describing and dissecting the structural components and existing conditions of the Hunter's Point South School building design. It should be reemphasized that all analysis and descriptions done in this report were focused on the original design of the structure. This report began by introducing the structure by system, going into detail about foundations, floor systems, framing, and lateral supports. It also introduced the design criteria that will be used for future research on this project.

In addition, Material strengths and gravity loads to be used on this design were determined and analyzed. Using AISC7-10, suitable dead load, live load, and snow load were chosen. Some differences did show up when compared to the NYC Building Code used in the original design. Three point checks on the existing gravity system concluded that member sizes were chosen appropriately in accordance to minimum code design.

Lastly, detailed wind and seismic load analyses were performed for this building. After calculations were performed, it was found that wind loads controlled the lateral system design everywhere but in the E-W shear force. Seismic forces caused a base shear of 1186 k and overturning moment of $10,549 \mathrm{k}$ - ft in this direction. This was 10.6% higher than the original design analysis. However, with wind loads creating a max base shear of 1322 k and overturning moment of $61,324 \mathrm{k}$ - ft , it is determined that wind will in fact control the building design. Also, taking into account location, New York City is in a low seismic region and on the coast line where higher winds are present. Furthermore, a Response Modification Coefficient (R) of 3 will be used for lateral load design.

Technical Report II will analyze and discuss the advantages and disadvantages of different floor systems that could be applied on this design.

APPENDIX A

WIND ANALYSIS

Figure 17: Wind Load Hand Calc.

Windload Design Criteria		
Per ASCE7-10	N-S	E-W
Risk Category	III	
Importance Factor	1	
Exposure	C	
Surface Roughness	B	
V	130	
$\mathrm{K}_{\text {d }}$	0.85	
$\mathrm{K}_{2 \mathrm{t}}$	1	
n_{3}	1.03	
G	0.85	
K_{h}	1.19	
h	72.3	
L	175	240.5
B	240.5	175
L/B	0.728	1.374
h / l	0.413	0.301
C_{p} Windward	0.8	
C_{0} Leeward	-0.5	-0.425
C_{p} Side	-0.7	
C_{p} Roof	0 to h/2	-0.9
	$\mathrm{h} / 2$ to h	-0.9
	h to 2 h	-0.5
	$>2 \mathrm{~h}$	-0.3
Reduction Factor	0.8	
$\mathrm{GC}_{\mathrm{pi}}$	+/-0.18	
K_{h}	1.179	
q_{2}	43.36	
q_{p}	45.30	
$\mathrm{GC}_{\mathrm{pn}}$ Windward	1.5	
$\mathrm{GC}_{\mathrm{pn}}$ Leeward	-1	

TECHNICAL REPORT I

Velocity Pressure			
Level	Height	$\mathbf{K}_{\mathbf{z}}$	$\mathbf{q}_{\mathbf{z}}$
Parapet	87.3	1.232	45.30
Roof	72.3	1.179	43.36
5	56	1.114	40.97
4	42	1.050	38.61
3	28	0.964	35.45
2	14	0.850	31.26
1	0	0.850	31.26

Table 12

APPENDIX B

SEISMIC ANALYSIS

Figure 18: Seismic Load Hand Calc.

Roof														
	weight/t	length	weight	weight/	ength	weight			Area	DL	u	SL	Tot	weight
Column				Beam			Floor							
10 x	49	- 17	833	24×76	24	1824	$31.1 \times$	232.45	7229.195	85	45	22	85	614481.6
10 x	54	17	918	24×76	24	1824	39.25 x	198.45	7789.163	85				662078.8
12 X	96	17	1632	24×68	21.3	1448.4	$101.75 \times$	104.66	10649.16	85				905178.2
10 x	54	17	918	24×68	23.08333	1569.667	TOTAL							2181739
10 x	54	- 17	918	24×68	24.39583	1658.917								2181.739
12 x	96	- 17	1632	24×68	19.10417	1299.083								
10 x	68	- 14	952	24×68	26.3125	1789.25								
10 x	54	14	756	24×68	26	1768	PERIMETER							
10 x	54	4 14	756	24×68	22	1496	19 x	592	11248	20				224960
10 x	54	- 17	918	30×99	30.58333	3027.75	$11 \times$	172	1892	20				37840
12 x	53	37	901	14×22	12	264	x		0					262800
12 x	79	7	553	12×26	12	312								262.8
10 x	54	17	918	12×26	10.65	276.9								
12 x	40	17	680	14×22	10.19444	224.2778								
12 x	79	7	553	14×22	12	264								
12 x	79	7	553	12×26	12	312								
12 x	79	7	553	12×26	10.65	276.9		TOTAL	2944.57					
10 x	33	37	231	14×22	10.19444	224.2778								
10 x	33	7	231	12×26	11.54165	300.0829								
12 x	40	7	280	12×26	8.133333	211.4667								
12 x	40	7	280	14×22	11.72917	258.0417								
10 x	33	7	231	24×76	24	1824								
12 x	50	17	850	21×101	24	2424								
10 x	33	7	231	14×233	21.3	4962.9								
10 X	33	,	231	16×36	23.08333	831								
10 x	33	7	231	16×36	24.39583	878.25								
10 x	33	7	231	16×36	19.10417	687.75								
12 x	79	7	553	21×50	26.3125	1315.625								
10 x	33	7	231	21×50	26	1300								
12 x	50	7	350	21×50	22	1100								
12 x	79	7	553	24×62	30.58333	1896.167								
12 x	79	7	553	4×13	8	104								
12 X	79	7	553	4×13	8.5	110.5								
12 x	79	7	553	4×13	9	117								
14 X	53	15	795	4×13	10	130								
10 x	33	7	231	4×13	10.5	136.5								
12 x	40	7	280	4×13	11	143								
12 X	79	7	553	4×13	12	156								
10 x	33	7	231	4×13	12.5	162.5								
12 x	40	7	280	4×13	13	169								
12 x	79	7	553	4×13	14	182								
12 x	79	7	553	4×13	14.5	188.5								
12 x	79	7	553	4×13	15	195								
10 x	33	7	231	4×13	16	208								
$14 \times$	61	7	427	4×13	16.5	214.5								
$14 \times$	74	7	518	4×13	17	221								
HSS		7	0	4×13	18	234								
HSS		7	0	4×13	18.5	240.5								
14 X	109	14.25	1553.25	4×13	19	247								
$14 \times$	193	13.5	2605.5	4×13	20	260								
14 X	233	12.75	2970.75	4×13	20.5	266.5								
14 X	283	12	3396	4×13	21	273								
14 X	342	11.25	3847.5	4×13	22	286								
14 X	342	10.75	3676.5	4×13	22.5	292.5								
10 x	49	7	343	4×13	24	312								
10 x	33	7	231	12×55	20	1100								
10 x	49	7	343	12×35	23.5	822.5								
10 x	33	14	462	12×35	23.5	822.5								
10 x	33	14	462	12×35	23.5	822.5								
10 X	33	14	462	12×35	20	700								
TOTAL			46874.5	12×35	23.5	822.5								
			46.8745	12×35	23.5	822.5								
				12×35	22.75	796.25								
				12×35	22.75	796.25								
				12×35	22.75	796.25								
				12×35	23.5	822.5								
				12×35	23.5	822.5								
				12×35	23.5	822.5								
				12×35	23.5	822.5								
				21101	20	2020								
				21×44	23.5	1034								
				21×44	23.5	1034								
				21×44	23.5	1034								
				21×44	23.5	1034								
				21×44	23.5	1034								
				12×35	23.5	822.5								
				21×44	22.75	1001								
				18×76	22.75	1729								
				21×73	20	1460								
				14×22	30	660								
				14×53	30	1590								
				14×22	30	660								
				14×82	30	2460								
				16×31	30	930								
				14×90	30	2700								

Figure 19:Part of Story Weight Calculations using Microsoft Excel

Figure 21: Part of Story Weight Hand Calc.

APPENDIX C

GRAVITY SPOT CHECK

$$
\text { For wi8t3s } \frac{V}{\Omega}=157 \gg 10.1 \text { on }
$$

$$
\therefore w 18+35 \text { works }
$$

Figure 22: Beam Check Hand Talc.

$\omega 18+40 \rightarrow M p=196, \varphi_{N A}=2 \quad a=\frac{2 Q_{n}}{1.85 f_{i} b_{\text {cH }}}=\frac{511}{(.85)(4)(500)}=2.71$

$$
f o V_{2}=0_{0}^{2} \phi \mu_{n}=416, Q_{n}=511
$$

$$
1 / 2 \text { actual }=6.5-\frac{2.71}{2} \approx 5
$$

for $2=5 \quad \phi M_{1}=391>365 Y$
\# of shear connectors $=511 / 21.2=2.4$ same as design
$I_{x}=612 \quad \Delta=\frac{P 1^{3}}{28 E \pm}=\frac{(42.1)(26)^{3}}{(28)(2800)(612)}=0.21 \mathrm{Z} \quad \Delta_{L 2}=\frac{l}{360}=\frac{(26)(122)}{360}=0.866>0.2 .4$

Figure 23: Girder Check Hand Calc.

$$
\begin{align*}
& \text { Dead lond roof }=81 \mathrm{ps} F \\
& \text { Dated lied floor }=X_{p, s F_{p u}} \\
& L_{L 100 F}=45 \mathrm{psF} \times .06+1=-27 \text { after } \\
& \begin{array}{l}
L_{\text {root }}=40 \\
L_{1} \text { corridor }=80
\end{array} \quad 46.76 \mathrm{Arg} \\
& L_{\text {Lraductur }}=\% \quad\left(.25+\frac{15^{20.4^{2}}}{\sqrt{4802}}=0.35\right. \\
& P_{L}=(0.5)(46.76)(922)=21.67^{\mathrm{K}} \times 2 \text { Floods } \\
& =43.35^{4} \\
& P_{L_{\text {OOF }}}=(27)(927)=25,0, \mathrm{~K} \\
& P_{D}=(81)(977)+2 \times(71)(727) \equiv 206.74 \\
& P_{u}=206.7125 .0+43.35=275^{K} \\
& \begin{array}{l}
\text { Assume spars } \\
\text { ewers }
\end{array} \\
& \text { ". Un belencer } \\
& \left.W_{L}=(0.5)(46.26)^{31+40} 2\right)=830 \\
& \text { FEM }=\frac{(0.83)\left(\frac{40 t 31}{2}\right)^{2}}{12}=87.2 \mathrm{ft} \\
& (\overbrace{43.6}^{43.6} M)_{87}^{4} M=43.6 \mathrm{Fth} \\
& \text { Assume: } h=1 y^{\prime} \\
& K=1 \\
& \text { try } \begin{array}{c}
w / 2 \text { 's } \\
d=12
\end{array} \\
& \left.P_{\text {eq }}=P_{u}+\frac{2 y\left(\mu_{u}\right)}{12}=275+24\right)(43.6)=362 \mathrm{k} \\
& W 12 \times 58 \Rightarrow \frac{P_{n}}{\Omega}=367^{\mathrm{k}} \text { for } 14^{\prime} \mathrm{heght} \tag{v}\\
& \text { same as design } \\
& 362>362
\end{align*}
$$

Figure 24: Column Check Hand Calc.

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { CE Exposure Factor: (sheltered) } \rightarrow 1.1 \text { table }>-2 \mid \\
(c+t \text { gory } c)
\end{array} \right\rvert\, P_{f}=0.7(1.1)(1.0)(1.1)(25 \\
& \text { Ct Thermal Factor: } 100 \text { table フ-3 }=22 \mathrm{pst}
\end{aligned}
$$

Figure 25: Calculated Gravity Loads

APPENDIX D

STRUCTURAL FRAMING PLANS

Figure 26: Second Floor Framing Plan

Figure 27: Third Floor Framing Plan

Figure 28: Fourth Floor Framing Plan

Figure 29: Fifth Floor Framing Plan

Figure 30: Roof Framing Plan

